Reu Apprentice Problems Instructors: Madhur Tulsiani and László Babai

ثبت نشده
چکیده

Problem 10. Your instructor constructed two polynomials P1(x) and P2(x), each of degree (at most) d and evaluated them both at points a1, . . . , an ∈ R. At this point things got a bit mixed up and he no longer knows which value is coming from which polynomial. You are given n pairs of values: (b1, c1), . . . , (bn, cn). We know that at each point ai, either bi = P1(ai) and ci = P2(ai), or bi = P2(ai) and ci = P1(ai) (things can be different for each i). Can you figure out both the polynomials P1(x) and P2(x)? What relation do you need between d and n to solve this problem? Do you need any conditions on the coefficients of the polynomials?

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apprentice Linear Algebra , 4 th lecture , 07 / 08 / 05 REU 2005 Instructor : László Babai Scribe :

a system has a solution. Recall that if x =  x1 .. x` , and the matrix A is written as A = [ a1 . . . a` ] , where ai is the ith column of the matrix, then Ax = ∑i=` i=1 xiai is simply a linear combination of the columns. Therefore if Ax = b holds, then b ∈ Span{a1, . . . ,a`}. Recall that the span of the ai is called the column space of the matrix A. It follows that rk(A) = rk ([A|b]), whe...

متن کامل

Chicago Math REU Apprentice Program Exercises Friday , July 24 Instructor : László Babai Scribe : Angela

Exercise 25.2. Recall that for A ∈Mn(R) with A = A , the Rayleigh quotient is defined as RA(x) = xTAx xT x . For symmetric φ : V → V , the Rayleigh quotient is defined as Rφ(x) = 〈x,φx〉 ||x||2 . Use the above theorem to show that argmaxxRφ(x) is achieved on V \ {0}. Proof. Note that Rφ(αx) = Rφ(x). So any value achieved by Rφ on V \ {0} is achieved on the unit sphere {x ∈ V | ||x|| = 1}. Restri...

متن کامل

Apprentice Linear Algebra , 3 rd day , 07 / 06 / 05 REU 2005 Instructor : László Babai

Regarding the entire discussion of vector spaces and their properties, we may replace R by any field F , and define vector space “over F” for which F is the domain of scalars. Note that it only makes sense to consider linear maps between vector spaces over the same field. We are already familiar with the field of real numbers R, but also with rational numbers Q, complex numbers C, and the finit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013